Loading...

Publications

Gallisà-Suñé, N., Sànchez-Fernàndez-de-Landa, P., Zimmermann, F., Serna, M., Regué, L., Paz, J., Llorca, O., Lüders, J., & Roig, J. (2023). BICD2 phosphorylation regulates dynein function and centrosome separation in G2 and M. Nature Communications, 14(1), 2434. https://doi.org/10.1038/s41467-023-38116-1
Lüders, J. (2023). Microtubule cytoskeleton: The centrosome gains a membrane. Current Biology: CB, 33(5), R180–R182. https://doi.org/10.1016/j.cub.2023.02.011
Ali, A., Vineethakumari, C., Lacasa, C., & Lüders, J. (2023). Microtubule nucleation and γTuRC centrosome localization in interphase cells require ch-TOG. Nature Communications, 14(1), 289. https://doi.org/10.1038/s41467-023-35955-w
Shankar, S., Hsu, Z.-T., Ezquerra, A., Li, C.-C., Huang, T.-L., Coyaud, E., Viais, R., Grauffel, C., Raught, B., Lim, C., Lüders, J., Tsai, S.-Y., & Hsia, K.-C. (2022). Α γ-tubulin complex-dependent pathway suppresses ciliogenesis by promoting cilia disassembly. Cell Reports, 41(7), 111642. https://doi.org/10.1016/j.celrep.2022.111642
Dutto, I., Gerhards, J., Herrera, A., Souckova, O., Škopová, V., Smak, J. A., Junza, A., Yanes, O., Boeckx, C., Burkhalter, M. D., Zikánová, M., Pons, S., Philipp, M., Lüders, J., & Stracker, T. H. (2022). Pathway-specific effects of ADSL deficiency on neurodevelopment. ELife, 11, e70518. https://doi.org/10.7554/eLife.70518
Vineethakumari, C., & Lüders, J. (2022). Microtubule Anchoring: Attaching Dynamic Polymers to Cellular Structures. Frontiers in Cell and Developmental Biology, 10, 867870. https://doi.org/10.3389/fcell.2022.867870
Lovera, M., & Lüders, J. (2021). The ciliary impact of nonciliary gene mutations. Trends in Cell Biology, 31(11), 876–887. https://doi.org/10.1016/j.tcb.2021.06.001
Viais, R., Fariña-Mosquera, M., Villamor-Payà, M., Watanabe, S., Palenzuela, L., Lacasa, C., & Lüders, J. (2021). Augmin deficiency in neural stem cells causes p53-dependent apoptosis and aborts brain development. ELife, 10, e67989. https://doi.org/10.7554/eLife.67989
Schweizer, N., & Lüders, J. (2021). From tip to toe - dressing centrioles in γTuRC. Journal of Cell Science, 134(14), jcs258397. https://doi.org/10.1242/jcs.258397
Lüders, J. (2021). Nucleating microtubules in neurons: Challenges and solutions. Developmental Neurobiology, 81(3), 273–283. https://doi.org/10.1002/dneu.22751
Zimmermann, F., Serna, M., Ezquerra, A., Fernandez-Leiro, R., Llorca, O., & Luders, J. (2020). Assembly of the asymmetric human γ-tubulin ring complex by RUVBL1-RUVBL2 AAA ATPase. Science Advances, 6(51), eabe0894. https://doi.org/10.1126/sciadv.abe0894
Parcerisas, A., Pujadas, L., Ortega-Gascó, A., Perelló-Amorós, B., Viais, R., Hino, K., Figueiro-Silva, J., La Torre, A., Trullás, R., Simó, S., Lüders, J., & Soriano, E. (2020). NCAM2 Regulates Dendritic and Axonal Differentiation through the Cytoskeletal Proteins MAP2 and 14-3-3. Cerebral Cortex (New York, N.Y.: 1991), 30(6), 3781–3799. https://doi.org/10.1093/cercor/bhz342
Ezquerra, A., Viais, R., & Lüders, J. (2020). Assaying Microtubule Nucleation. Methods in Molecular Biology (Clifton, N.J.), 2101, 163–178. https://doi.org/10.1007/978-1-0716-0219-5_11
Freixo, F., Martinez Delgado, P., Manso, Y., Sánchez-Huertas, C., Lacasa, C., Soriano, E., Roig, J., & Lüders, J. (2018). NEK7 regulates dendrite morphogenesis in neurons via Eg5-dependent microtubule stabilization. Nature Communications, 9(1), 2330. https://doi.org/10.1038/s41467-018-04706-7
Lüders, J. (2018). XMAP215 joins microtubule nucleation team. Nature Cell Biology, 20(5), 508–510. https://doi.org/10.1038/s41556-018-0100-9
Paz, J., & Lüders, J. (2018). Microtubule-Organizing Centers: Towards a Minimal Parts List. Trends in Cell Biology, 28(3), 176–187. https://doi.org/10.1016/j.tcb.2017.10.005
Cota, R. R., Teixidó-Travesa, N., Ezquerra, A., Eibes, S., Lacasa, C., Roig, J., & Lüders, J. (2017). MZT1 regulates microtubule nucleation by linking γTuRC assembly to adapter-mediated targeting and activation. Journal of Cell Science, 130(2), 406–419. https://doi.org/10.1242/jcs.195321
Sánchez-Huertas, C., Freixo, F., Viais, R., Lacasa, C., Soriano, E., & Lüders, J. (2016). Non-centrosomal nucleation mediated by augmin organizes microtubules in post-mitotic neurons and controls axonal microtubule polarity. Nature Communications, 7, 12187. https://doi.org/10.1038/ncomms12187
Lecland, N., & Lüders, J. (2016). Imaging and Quantifying the Dynamics of γ-Tubulin at Microtubule Minus Ends in Mitotic Spindles. Methods in Molecular Biology (Clifton, N.J.), 1413, 63–75. https://doi.org/10.1007/978-1-4939-3542-0_5
Marjanović, M., Sánchez-Huertas, C., Terré, B., Gómez, R., Scheel, J. F., Pacheco, S., Knobel, P. A., Martínez-Marchal, A., Aivio, S., Palenzuela, L., Wolfrum, U., McKinnon, P. J., Suja, J. A., Roig, I., Costanzo, V., Lüders, J., & Stracker, T. H. (2015). CEP63 deficiency promotes p53-dependent microcephaly and reveals a role for the centrosome in meiotic recombination. Nature Communications, 6, 7676. https://doi.org/10.1038/ncomms8676
Sánchez-Huertas, C., & Lüders, J. (2015). The augmin connection in the geometry of microtubule networks. Current Biology: CB, 25(7), R294-299. https://doi.org/10.1016/j.cub.2015.02.006
Lecland, N., & Lüders, J. (2014). The dynamics of microtubule minus ends in the human mitotic spindle. Nature Cell Biology, 16(8), 770–778. https://doi.org/10.1038/ncb2996
Comartin, D., Gupta, G. D., Fussner, E., Coyaud, É., Hasegan, M., Archinti, M., Cheung, S. W. T., Pinchev, D., Lawo, S., Raught, B., Bazett-Jones, D. P., Lüders, J., & Pelletier, L. (2013). CEP120 and SPICE1 cooperate with CPAP in centriole elongation. Current Biology: CB, 23(14), 1360–1366. https://doi.org/10.1016/j.cub.2013.06.002
Brown, N. J., Marjanović, M., Lüders, J., Stracker, T. H., & Costanzo, V. (2013). Cep63 and cep152 cooperate to ensure centriole duplication. PloS One, 8(7), e69986. https://doi.org/10.1371/journal.pone.0069986
Lüders, J. (2012). The amorphous pericentriolar cloud takes shape. Nature Cell Biology, 14(11), 1126–1128. https://doi.org/10.1038/ncb2617
Teixidó-Travesa, N., Roig, J., & Lüders, J. (2012). The where, when and how of microtubule nucleation - one ring to rule them all. Journal of Cell Science, 125(Pt 19), 4445–4456. https://doi.org/10.1242/jcs.106971
Estruch, S. B., Buzón, V., Carbó, L. R., Schorova, L., Lüders, J., & Estébanez-Perpiñá, E. (2012). The oncoprotein BCL11A binds to orphan nuclear receptor TLX and potentiates its transrepressive function. PloS One, 7(6), e37963. https://doi.org/10.1371/journal.pone.0037963
Teixidó-Travesa, N., Villén, J., Lacasa, C., Bertran, M. T., Archinti, M., Gygi, S. P., Caelles, C., Roig, J., & Lüders, J. (2010). The gammaTuRC revisited: a comparative analysis of interphase and mitotic human gammaTuRC redefines the set of core components and identifies the novel subunit GCP8. Molecular Biology of the Cell, 21(22), 3963–3972. https://doi.org/10.1091/mbc.E10-05-0408
Archinti, M., Lacasa, C., Teixidó-Travesa, N., & Lüders, J. (2010). SPICE--a previously uncharacterized protein required for centriole duplication and mitotic chromosome congression. Journal of Cell Science, 123(Pt 18), 3039–3046. https://doi.org/10.1242/jcs.069963
Haren, L., Stearns, T., & Lüders, J. (2009). Plk1-dependent recruitment of gamma-tubulin complexes to mitotic centrosomes involves multiple PCM components. PloS One, 4(6), e5976. https://doi.org/10.1371/journal.pone.0005976
Lüders, J., & Stearns, T. (2007). Microtubule-organizing centres: a re-evaluation. Nature Reviews. Molecular Cell Biology, 8(2), 161–167. https://doi.org/10.1038/nrm2100
Lüders, J., Patel, U. K., & Stearns, T. (2006). GCP-WD is a gamma-tubulin targeting factor required for centrosomal and chromatin-mediated microtubule nucleation. Nature Cell Biology, 8(2), 137–147. https://doi.org/10.1038/ncb1349
Lüders, J., Pyrowolakis, G., & Jentsch, S. (2003). The ubiquitin-like protein HUB1 forms SDS-resistant complexes with cellular proteins in the absence of ATP. EMBO Reports, 4(12), 1169–1174. https://doi.org/10.1038/sj.embor.7400025
Lüders, J., Demand, J., Papp, O., & Höhfeld, J. (2000). Distinct isoforms of the cofactor BAG-1 differentially affect Hsc70 chaperone function. The Journal of Biological Chemistry, 275(20), 14817–14823. https://doi.org/10.1074/jbc.275.20.14817
Lüders, J., Demand, J., & Höhfeld, J. (2000). The ubiquitin-related BAG-1 provides a link between the molecular chaperones Hsc70/Hsp70 and the proteasome. The Journal of Biological Chemistry, 275(7), 4613–4617. https://doi.org/10.1074/jbc.275.7.4613
Möller, G., Lüders, J., Markus, M., Husen, B., Van Veldhoven, P. P., & Adamski, J. (1999). Peroxisome targeting of porcine 17beta-hydroxysteroid dehydrogenase type IV/D-specific multifunctional protein 2 is mediated by its C-terminal tripeptide AKI. Journal of Cellular Biochemistry, 73(1), 70–78. https://doi.org/10.1002/(sici)1097-4644(19990401)73:1<70::aid-jcb8>3.0.co;2-k
Lüders, J., Demand, J., Schönfelder, S., Frien, M., Zimmermann, R., & Höhfeld, J. (1998). Cofactor-induced modulation of the functional specificity of the molecular chaperone Hsc70. Biological Chemistry, 379(10), 1217–1226. https://doi.org/10.1515/bchm.1998.379.10.1217
Demand, J., Lüders, J., & Höhfeld, J. (1998). The carboxy-terminal domain of Hsc70 provides binding sites for a distinct set of chaperone cofactors. Molecular and Cellular Biology, 18(4), 2023–2028. https://doi.org/10.1128/MCB.18.4.2023